35 join语句怎么优化?
35 join语句怎么优化?
在上一篇文章中,我和你介绍了 join 语句的两种算法,分别是 Index Nested-Loop Join(NLJ) 和 Block Nested-
Loop Join(BNL)。
我们发现在使用 NLJ 算法的时候,其实效果还是不错的,比通过应用层拆分成多个语句然后再拼接查询结果更方便,而且性能也不会差。
但是,BNL 算法在大表 join 的时候性能就差多了,比较次数等于两个表参与 join 的行数的乘积,很消耗 CPU 资源。
当然了,这两个算法都还有继续优化的空间,我们今天就来聊聊这个话题。
为了便于分析,我还是创建两个表 t1、t2 来和你展开今天的问题。
create table t1(id int primary key, a int, b int, index(a));
create table t2 like t1;
drop procedure idata;
delimiter ;;
create procedure idata()
begin
declare i int;
set i=1;
while(i<=1000)do
insert into t1 values(i, 1001-i, i);
set i=i+1;
end while;
set i=1;
while(i<=1000000)do
insert into t2 values(i, i, i);
set i=i+1;
end while;
end;;
delimiter ;
call idata();
为了便于后面量化说明,我在表 t1 里,插入了 1000 行数据,每一行的 a=1001-id 的值。也就是说,表 t1 中字段 a 是逆序的。同时,我在表
t2 中插入了 100 万行数据。
Multi-Range Read 优化
在介绍 join 语句的优化方案之前,我需要先和你介绍一个知识点,即:Multi-Range Read 优化
(MRR)。这个优化的主要目的是尽量使用顺序读盘。
在[第 4 篇文章]中,我和你介绍 InnoDB 的索引结构时,提到了“回表”的概念。我们先来回顾一下这个概念。回表是指,InnoDB 在普通索引 a
上查到主键 id 的值后,再根据一个个主键 id 的值到主键索引上去查整行数据的过程。
然后,有同学在留言区问到,回表过程是一行行地查数据,还是批量地查数据?
我们先来看看这个问题。假设,我执行这个语句:
select * from t1 where a>=1 and a<=100;
主键索引是一棵 B+ 树,在这棵树上,每次只能根据一个主键 id 查到一行数据。因此,回表肯定是一行行搜索主键索引的,基本流程如图 1 所示。
图 1 基本回表流程
如果随着 a 的值递增顺序查询的话,id
的值就变成随机的,那么就会出现随机访问,性能相对较差。虽然“按行查”这个机制不能改,但是调整查询的顺序,还是能够加速的。
因为大多数的数据都是按照主键递增顺序插入得到的,所以我们可以认为,如果按照主键的递增顺序查询的话,对磁盘的读比较接近顺序读,能够提升读性能。
这,就是 MRR 优化的设计思路。此时,语句的执行流程变成了这样:
- 根据索引 a,定位到满足条件的记录,将 id 值放入 read_rnd_buffer 中 ;
- 将 read_rnd_buffer 中的 id 进行递增排序;
- 排序后的 id 数组,依次到主键 id 索引中查记录,并作为结果返回。
这里,read_rnd_buffer 的大小是由 read_rnd_buffer_size 参数控制的。如果步骤 1 中,read_rnd_buffer
放满了,就会先执行完步骤 2 和 3,然后清空 read_rnd_buffer。之后继续找索引 a 的下个记录,并继续循环。
另外需要说明的是,如果你想要稳定地使用 MRR 优化的话,需要设置set optimizer_switch="mrr_cost_based=off"
。(官方文档的说法,是现在的优化器策略,判断消耗的时候,会更倾向于不使用
MRR,把 mrr_cost_based 设置为 off,就是固定使用 MRR 了。)
下面两幅图就是使用了 MRR 优化后的执行流程和 explain 结果。
图 2 MRR 执行流程
图 3 MRR 执行流程的 explain 结果
从图 3 的 explain 结果中,我们可以看到 Extra 字段多了 Using MRR,表示的是用上了 MRR 优化。而且,由于我们在
read_rnd_buffer 中按照 id 做了排序,所以最后得到的结果集也是按照主键 id 递增顺序的,也就是与图 1 结果集中行的顺序相反。
到这里,我们小结一下。
MRR 能够提升性能的核心 在于,这条查询语句在索引 a 上做的是一个范围查询(也就是说,这是一个多值查询),可以得到足够多的主键
id。这样通过排序以后,再去主键索引查数据,才能体现出“顺序性”的优势。
Batched Key Access
理解了 MRR 性能提升的原理,我们就能理解 MySQL 在 5.6 版本后开始引入的 Batched Key Access(BKA) 算法了。这个 BKA
算法,其实就是对 NLJ 算法的优化。
我们再来看看上一篇文章中用到的 NLJ 算法的流程图:
图 4 Index Nested-Loop Join 流程图
NLJ 算法执行的逻辑是:从驱动表 t1,一行行地取出 a 的值,再到被驱动表 t2 去做 join。也就是说,对于表 t2
来说,每次都是匹配一个值。这时,MRR 的优势就用不上了。
那怎么才能一次性地多传些值给表 t2 呢?方法就是,从表 t1 里一次性地多拿些行出来,一起传给表 t2。
既然如此,我们就把表 t1 的数据取出来一部分,先放到一个临时内存。这个临时内存不是别人,就是 join_buffer。
通过上一篇文章,我们知道 join_buffer 在 BNL 算法里的作用,是暂存驱动表的数据。但是在 NLJ 算法里并没有用。那么,我们刚好就可以复用
join_buffer 到 BKA 算法中。
如图 5 所示,是上面的 NLJ 算法优化后的 BKA 算法的流程。
图 5 Batched Key Access 流程
图中,我在 join_buffer 中放入的数据是 P1P100,表示的是只会取查询需要的字段。当然,如果 join buffer 放不下 P1P100
的所有数据,就会把这 100 行数据分成多段执行上图的流程。
那么,这个 BKA 算法到底要怎么启用呢?
如果要使用 BKA 优化算法的话,你需要在执行 SQL 语句之前,先设置
set optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';
其中,前两个参数的作用是要启用 MRR。这么做的原因是,BKA 算法的优化要依赖于 MRR。
BNL 算法的性能问题
说完了 NLJ 算法的优化,我们再来看 BNL 算法的优化。
我在上一篇文章末尾,给你留下的思考题是,使用 Block Nested-Loop Join(BNL)
算法时,可能会对被驱动表做多次扫描。如果这个被驱动表是一个大的冷数据表,除了会导致 IO 压力大以外,还会对系统有什么影响呢?
在[第 33 篇文章]中,我们说到 InnoDB 的 LRU 算法的时候提到,由于 InnoDB 对 Bufffer Pool 的 LRU
算法做了优化,即:第一次从磁盘读入内存的数据页,会先放在 old 区域。如果 1 秒之后这个数据页不再被访问了,就不会被移动到 LRU 链表头部,这样对
Buffer Pool 的命中率影响就不大。
但是,如果一个使用 BNL 算法的 join 语句,多次扫描一个冷表,而且这个语句执行时间超过 1 秒,就会在再次扫描冷表的时候,把冷表的数据页移到 LRU
链表头部。
这种情况对应的,是冷表的数据量小于整个 Buffer Pool 的 3/8,能够完全放入 old 区域的情况。
如果这个冷表很大,就会出现另外一种情况:业务正常访问的数据页,没有机会进入 young 区域。
由于优化机制的存在,一个正常访问的数据页,要进入 young 区域,需要隔 1 秒后再次被访问到。但是,由于我们的 join
语句在循环读磁盘和淘汰内存页,进入 old 区域的数据页,很可能在 1 秒之内就被淘汰了。这样,就会导致这个 MySQL 实例的 Buffer Pool
在这段时间内,young 区域的数据页没有被合理地淘汰。
也就是说,这两种情况都会影响 Buffer Pool 的正常运作。
大表 join 操作虽然对 IO 有影响,但是在语句执行结束后,对 IO 的影响也就结束了。但是,对 Buffer Pool
的影响就是持续性的,需要依靠后续的查询请求慢慢恢复内存命中率。
为了减少这种影响,你可以考虑增大 join_buffer_size 的值,减少对被驱动表的扫描次数。
也就是说,BNL 算法对系统的影响主要包括三个方面:
- 可能会多次扫描被驱动表,占用磁盘 IO 资源;
- 判断 join 条件需要执行 M*N 次对比(M、N 分别是两张表的行数),如果是大表就会占用非常多的 CPU 资源;
- 可能会导致 Buffer Pool 的热数据被淘汰,影响内存命中率。
我们执行语句之前,需要通过理论分析和查看 explain 结果的方式,确认是否要使用 BNL 算法。如果确认优化器会使用 BNL
算法,就需要做优化。优化的常见做法是,给被驱动表的 join 字段加上索引,把 BNL 算法转成 BKA 算法。
接下来,我们就具体看看,这个优化怎么做?
BNL 转 BKA
一些情况下,我们可以直接在被驱动表上建索引,这时就可以直接转成 BKA 算法了。
但是,有时候你确实会碰到一些不适合在被驱动表上建索引的情况。比如下面这个语句:
select * from t1 join t2 on (t1.b=t2.b) where t2.b>=1 and t2.b<=2000;
我们在文章开始的时候,在表 t2 中插入了 100 万行数据,但是经过 where 条件过滤后,需要参与 join 的只有 2000
行数据。如果这条语句同时是一个低频的 SQL 语句,那么再为这个语句在表 t2 的字段 b 上创建一个索引就很浪费了。
但是,如果使用 BNL 算法来 join 的话,这个语句的执行流程是这样的:
- 把表 t1 的所有字段取出来,存入 join_buffer 中。这个表只有 1000 行,join_buffer_size 默认值是 256k,可以完全存入。
- 扫描表 t2,取出每一行数据跟 join_buffer 中的数据进行对比,
* 如果不满足 t1.b=t2.b,则跳过;
* 如果满足 t1.b=t2.b, 再判断其他条件,也就是是否满足 t2.b 处于 [1,2000] 的条件,如果是,就作为结果集的一部分返回,否则跳过。
我在上一篇文章中说过,对于表 t2 的每一行,判断 join 是否满足的时候,都需要遍历 join_buffer 中的所有行。因此判断等值条件的次数是
1000*100 万 =10 亿次,这个判断的工作量很大。
图 6 explain 结果
图 7 语句执行时间
可以看到,explain 结果里 Extra 字段显示使用了 BNL 算法。在我的测试环境里,这条语句需要执行 1 分 11 秒。
在表 t2 的字段 b 上创建索引会浪费资源,但是不创建索引的话这个语句的等值条件要判断 10 亿次,想想也是浪费。那么,有没有两全其美的办法呢?
这时候,我们可以考虑使用临时表。使用临时表的大致思路是:
- 把表 t2 中满足条件的数据放在临时表 tmp_t 中;
- 为了让 join 使用 BKA 算法,给临时表 tmp_t 的字段 b 加上索引;
- 让表 t1 和 tmp_t 做 join 操作。
此时,对应的 SQL 语句的写法如下:
create temporary table temp_t(id int primary key, a int, b int, index(b))engine=innodb;
insert into temp_t select * from t2 where b>=1 and b<=2000;
select * from t1 join temp_t on (t1.b=temp_t.b);
图 8 就是这个语句序列的执行效果。
图 8 使用临时表的执行效果
可以看到,整个过程 3 个语句执行时间的总和还不到 1 秒,相比于前面的 1 分 11 秒,性能得到了大幅提升。接下来,我们一起看一下这个过程的消耗:
- 执行 insert 语句构造 temp_t 表并插入数据的过程中,对表 t2 做了全表扫描,这里扫描行数是 100 万。
- 之后的 join 语句,扫描表 t1,这里的扫描行数是 1000;join 比较过程中,做了 1000 次带索引的查询。相比于优化前的 join 语句需要做 10 亿次条件判断来说,这个优化效果还是很明显的。
总体来看,不论是在原表上加索引,还是用有索引的临时表,我们的思路都是让 join 语句能够用上被驱动表上的索引,来触发 BKA 算法,提升查询性能。
扩展 -hash join
看到这里你可能发现了,其实上面计算 10 亿次那个操作,看上去有点儿傻。如果 join_buffer
里面维护的不是一个无序数组,而是一个哈希表的话,那么就不是 10 亿次判断,而是 100 万次 hash 查找。这样的话,整条语句的执行速度就快多了吧?
确实如此。
这,也正是 MySQL 的优化器和执行器一直被诟病的一个原因:不支持哈希 join。并且,MySQL 官方的
roadmap,也是迟迟没有把这个优化排上议程。
实际上,这个优化思路,我们可以自己实现在业务端。实现流程大致如下:
select * from t1;
取得表 t1 的全部 1000 行数据,在业务端存入一个 hash 结构,比如 C++ 里的 set、PHP 的数组这样的数据结构。select * from t2 where b>=1 and b<=2000;
获取表 t2 中满足条件的 2000 行数据。- 把这 2000 行数据,一行一行地取到业务端,到 hash 结构的数据表中寻找匹配的数据。满足匹配的条件的这行数据,就作为结果集的一行。
理论上,这个过程会比临时表方案的执行速度还要快一些。如果你感兴趣的话,可以自己验证一下。
小结
今天,我和你分享了 Index Nested-Loop Join(NLJ)和 Block Nested-Loop Join(BNL)的优化方法。
在这些优化方法中:
- BKA 优化是 MySQL 已经内置支持的,建议你默认使用;
- BNL 算法效率低,建议你都尽量转成 BKA 算法。优化的方向就是给被驱动表的关联字段加上索引;
- 基于临时表的改进方案,对于能够提前过滤出小数据的 join 语句来说,效果还是很好的;
- MySQL 目前的版本还不支持 hash join,但你可以配合应用端自己模拟出来,理论上效果要好于临时表的方案。
最后,我给你留下一道思考题吧。
我们在讲 join 语句的这两篇文章中,都只涉及到了两个表的 join。那么,现在有一个三个表 join 的需求,假设这三个表的表结构如下:
CREATE TABLE `t1` (
`id` int(11) NOT NULL,
`a` int(11) DEFAULT NULL,
`b` int(11) DEFAULT NULL,
`c` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
create table t2 like t1;
create table t3 like t2;
insert into ... // 初始化三张表的数据
语句的需求实现如下的 join 逻辑:
select * from t1 join t2 on(t1.a=t2.a) join t3 on (t2.b=t3.b) where t1.c>=X and t2.c>=Y and t3.c>=Z;
现在为了得到最快的执行速度,如果让你来设计表 t1、t2、t3 上的索引,来支持这个 join 语句,你会加哪些索引呢?
同时,如果我希望你用 straight_join 来重写这个语句,配合你创建的索引,你就需要安排连接顺序,你主要考虑的因素是什么呢?
你可以把你的方案和分析写在留言区,我会在下一篇文章的末尾和你讨论这个问题。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。